Eikonal Type Equations for Geometrical Singularities of Solutions in Field Theory
نویسندگان
چکیده
We discuss several aspects of singularities of the solutions of the partial differential equations of Klein–Gordon, Schrödinger and Dirac. In particular we analyze the fold type singularity, of the first and higher orders, and the related characteristic equations. We also consider the field equations as reduction of homogenous equations in higher dimensions, and discuss how singularities of the solution are reduced.
منابع مشابه
Multivalued Solutions to the Eikonal Equation in Stratified Media
In the present paper we study the geometric properties of the multivalued solutions to the eikonal equation and we give the appropriate classification theorems. Our motivation stems from geometrical optics for approximating high frequency waves in stratified media. We consider the case of a fixed Hamiltonian imposed by the medium, and we present the geometric framework that describes the geomet...
متن کاملRings of Singularities
This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...
متن کاملEikonal Approximation to 5 D Wave Equations as Geodesic Motion in a Curved 4 D Spacetime
We first derive the relation between the eikonal approximation to the Maxwell wave equations in an inhomogeneous anisotropic medium and geodesic motion in a three dimensional Riemannian manifold using a method which identifies the symplectic structure of the corresponding mechanics. We then apply an analogous method to the five dimensional generalization of Maxwell theory required by the gauge ...
متن کاملThe Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
متن کامل60 v 1 1 6 Ju n 20 00 Blow - up for solutions of hyperbolic PDE and spacetime singularities
An important question in mathematical relativity theory is that of the nature of spacetime singularities. The equations of general relativity, the Einstein equations, are essentially hyperbolic in nature and the study of spacetime singularities is naturally related to blow-up phenomena for nonlinear hyperbolic systems. These connections are explained and recent progress in applying the theory o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993